
Big Data in the Automotive Industry: 2018 – 2030 – Opportunities, Challenges, Strategies & Forecasts
Report Code: KNJ00009
Publisher: Date of Publish:
No. of Pages: 501 Category: Automotive Publisher: Date of Publish:
“Big Data” originally emerged as a term to describe datasets whose size is beyond the ability of traditional databases to capture, store, manage and analyze. However, the scope of the term has significantly expanded over the years. Big Data not only refers to the data itself but also a set of technologies that capture, store, manage and analyze large and variable collections of data, to solve complex problems. Amid the proliferation of real-time and historical data from sources such as connected devices, web, social media, sensors, log files and transactional applications, Big Data is rapidly gaining traction from a diverse range of vertical sectors. The automotive industry is no exception to this trend, where Big Data has found a host of applications ranging from product design and manufacturing to predictive vehicle maintenance and autonomous driving. SNS Telecom & IT estimates that Big Data investments in the automotive industry will account for more than $3.3 Billion in 2018 alone. Led by a plethora of business opportunities for automotive OEMs, tier-1 suppliers, insurers, dealerships and other stakeholders, these investments are further expected to grow at a CAGR of approximately 16% over the next three years. The “Big Data in the Automotive Industry: 2018 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of Big Data in the automotive industry including key market drivers, challenges, investment potential, application areas, use cases, future roadmap, value chain, case studies, vendor profiles and strategies. The report also presents market size forecasts for Big Data hardware, software and professional services investments from 2018 through to 2030. The forecasts are segmented for 8 horizontal submarkets, 4 application areas, 18 use cases, 6 regions and 35 countries. The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.Topics Covered The report covers the following topics: - Big Data ecosystem - Market drivers and barriers - Enabling technologies, standardization and regulatory initiatives - Big Data analytics and implementation models - Business case, application areas and use cases in the automotive industry - Over 35 case studies of Big Data investments by automotive OEMs and other stakeholders - Future roadmap and value chain - Profiles and strategies of over 270 leading and emerging Big Data ecosystem players - Strategic recommendations for Big Data vendors, automotive OEMs and other stakeholders - Market analysis and forecasts from 2018 till 2030 Forecast Segmentation Market forecasts are provided for each of the following submarkets and their subcategories: Hardware, Software & Professional Services - Hardware - Software - Professional Services Horizontal Submarkets - Storage & Compute Infrastructure - Networking Infrastructure - Hadoop & Infrastructure Software - SQL - NoSQL - Analytic Platforms & Applications - Cloud Platforms - Professional Services Application Areas - Product Development, Manufacturing & Supply Chain - After-Sales, Warranty & Dealer Management - Connected Vehicles & Intelligent Transportation - Marketing, Sales & Other Applications Use Cases - Supply Chain Management - Manufacturing - Product Design & Planning - Predictive Maintenance & Real-Time Diagnostics - Recall & Warranty Management - Parts Inventory & Pricing Optimization - Dealer Management & Customer Support Services - UBI (Usage-Based Insurance) - Autonomous & Semi-Autonomous Driving - Intelligent Transportation - Fleet Management - Driver Safety & Vehicle Cyber Security - In-Vehicle Experience, Navigation & Infotainment - Ride Sourcing, Sharing & Rentals - Marketing & Sales - Customer Retention - Third Party Monetization - Other Use Cases Regional Markets - Asia Pacific - Eastern Europe - Latin & Central America - Middle East & Africa - North America - Western Europe Country Markets - Argentina, Australia, Brazil, Canada, China, Czech Republic, Denmark, Finland, France, Germany, India, Indonesia, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, Norway, Pakistan, Philippines, Poland, Qatar, Russia, Saudi Arabia, Singapore, South Africa, South Korea, Spain, Sweden, Taiwan, Thailand, UAE, UK, USA Key Questions Answered The report provides answers to the following key questions: - How big is the Big Data opportunity in the automotive industry? - How is the market evolving by segment and region? - What will the market size be in 2021, and at what rate will it grow? - What trends, challenges and barriers are influencing its growth? - Who are the key Big Data software, hardware and services vendors, and what are their strategies? - How much are automotive OEMs and other stakeholders investing in Big Data? - What opportunities exist for Big Data analytics in the automotive industry? - Which countries, application areas and use cases will see the highest percentage of Big Data investments in the automotive industry? Key Findings The report has the following key findings: - In 2018, Big Data vendors will pocket more than $3.3 Billion from hardware, software and professional services revenues in the automotive industry. These investments are further expected to grow at a CAGR of approximately 16% over the next three years, eventually accounting for over $5 Billion by the end of 2021. - Through the use of Big Data technologies, automotive OEMs and other stakeholders are beginning to exploit vehicle-generated data assets in a number of innovative ways ranging from predictive vehicle maintenance and UBI (Usage-Based Insurance) to real-time mapping, personalized concierge, autonomous driving and beyond. - Edge analytics, which refers to the processing and analysis of information closer to the point of origin, is increasingly becoming an indispensable capability for applications such as autonomous driving where real-time data – from cameras, LiDAR and other on-board sensors – needs to be acted upon instantly and reliably. - Privacy continues to remain a major concern, and ensuring the protection of sensitive information – through creative anonymization and dedicated cybersecurity investments – is necessary in order to monetize the swaths of Big Data that will be generated by a growing installed base of connected vehicles and other segments of the automotive industry. List of Companies Mentioned 1010data Absolutdata Accenture ACEA (European Automobile Manufacturers’ Association) Actian Corporation Adaptive Insights Adobe Systems Advizor Solutions AeroSpike AFS Technologies Alation Algorithmia Allstate Corporation Alluxio Alphabet ALTEN Alteryx AMD (Advanced Micro Devices) Anaconda Apixio Arcadia Data Arimo Arity ARM ASF (Apache Software Foundation) AtScale Attivio Attunity Audi Automated Insights Automobili Lamborghini automotiveMastermind AVORA AWS (Amazon Web Services) Axiomatics Ayasdi BackOffice Associates Basho Technologies BCG (Boston Consulting Group) Bedrock Data BetterWorks Big Panda BigML Birst Bitam Blue Medora BlueData Software BlueTalon BMC Software BMW BOARD International Booz Allen Hamilton Bosch Boxever CACI International Cambridge Semantics Capgemini Cazena Centrifuge Systems CenturyLink Chartio Cisco Systems Citroën Civis Analytics ClearStory Data Cloudability Cloudera Cloudian Clustrix CognitiveScale Collibra Concurrent Technology Confluent Contexti Continental Couchbase Cox Automotive Cox Enterprises Crate.io Cray CSA (Cloud Security Alliance) CSCC (Cloud Standards Customer Council) Daimler Dash Labs Databricks Dataiku Datalytyx Datameer DataRobot DataStax Datawatch Corporation Datos IO DDN (DataDirect Networks) Decisyon Dell Technologies Deloitte Delphi Automotive Demandbase Denodo Technologies Denso Corporation Dianomic Systems Digital Reasoning Systems Dimensional Insight DMG (Data Mining Group) Dolphin Enterprise Solutions Corporation Domino Data Lab Domo Dongfeng Motor Corporation Dremio DriveScale Druva DS Automobiles Ducati Dundas Data Visualization DXC Technology Elastic Engineering Group (Engineering Ingegneria Informatica) EnterpriseDB Corporation eQ Technologic Ericsson Erwin EVŌ (Big Cloud Analytics) EXASOL EXL (ExlService Holdings) Facebook FCA (Fiat Chrysler Automobiles) FICO (Fair Isaac Corporation) Figure Eight FogHorn Systems Ford Motor Company Fractal Analytics Franz Fujitsu Fuzzy Logix Gainsight GE (General Electric) Geely (Zhejiang Geely Holding Group) Glassbeam GM (General Motors Company) GoodData Corporation Google Grakn Labs Greenwave Systems GridGain Systems Groupe PSA Groupe Renault Guavus H2O.ai Hanse Orga Group HarperDB HCL Technologies Hedvig HERE Hitachi Vantara Honda Motor Company Hortonworks HPE (Hewlett Packard Enterprise) Huawei HVR HyperScience HyTrust Hyundai Motor Company IBM Corporation iDashboards IDERA IEC (International Electrotechnical Commission) IEEE (Institute of Electrical and Electronics Engineers) Ignite Technologies Imanis Data Impetus Technologies INCITS (InterNational Committee for Information Technology Standards) Incorta InetSoft Technology Corporation InfluxData Infogix Infor Informatica Information Builders Infosys Infoworks Insightsoftware.com InsightSquared Intel Corporation Interana InterSystems Corporation ISO (International Organization for Standardization) ITU (International Telecommunication Union) Jaguar Land Rover Jedox Jethro Jinfonet Software Juniper Networks KALEAO KDDI Corporation Keen IO Keyrus Kinetica KNIME Kognitio Kyvos Insights LeanXcale Lexalytics Lexmark International Lightbend Linux Foundation Logi Analytics Logical Clocks Longview Solutions Looker Data Sciences LucidWorks Luminoso Technologies Lytx Maana Manthan Software Services MapD Technologies MapR Technologies MariaDB Corporation MarkLogic Corporation Mathworks Mazda Motor Corporation Melissa MemSQL Mercedes-Benz METI (Ministry of Economy, Trade and Industry, Japan) Metric Insights Michelin Microsoft Corporation MicroStrategy Minitab Mobileye MongoDB Mu Sigma NEC Corporation Neo4j NetApp Nimbix Nissan Motor Company Nokia NTT Data Corporation NTT DoCoMo Numerify NuoDB NVIDIA Corporation OASIS (Organization for the Advancement of Structured Information Standards) Objectivity Oblong Industries ODaF (Open Data Foundation) ODCA (Open Data Center Alliance) OGC (Open Geospatial Consortium)
Table of Contents 1 Chapter 1: Introduction 1.1 Executive Summary 1.2 Topics Covered 1.3 Forecast Segmentation 1.4 Key Questions Answered 1.5 Key Findings 1.6 Methodology 1.7 Target Audience 1.8 Companies & Organizations Mentioned 2 Chapter 2: An Overview of Big Data 2.1 What is Big Data? 2.2 Key Approaches to Big Data Processing 2.2.1 Hadoop 2.2.2 NoSQL 2.2.3 MPAD (Massively Parallel Analytic Databases) 2.2.4 In-Memory Processing 2.2.5 Stream Processing Technologies 2.2.6 Spark 2.2.7 Other Databases & Analytic Technologies 2.3 Key Characteristics of Big Data 2.3.1 Volume 2.3.2 Velocity 2.3.3 Variety 2.3.4 Value 2.4 Market Growth Drivers 2.4.1 Awareness of Benefits 2.4.2 Maturation of Big Data Platforms 2.4.3 Continued Investments by Web Giants, Governments & Enterprises 2.4.4 Growth of Data Volume, Velocity & Variety 2.4.5 Vendor Commitments & Partnerships 2.4.6 Technology Trends Lowering Entry Barriers 2.5 Market Barriers 2.5.1 Lack of Analytic Specialists 2.5.2 Uncertain Big Data Strategies 2.5.3 Organizational Resistance to Big Data Adoption 2.5.4 Technical Challenges: Scalability & Maintenance 2.5.5 Security & Privacy Concerns 3 Chapter 3: Big Data Analytics 3.1 What are Big Data Analytics? 3.2 The Importance of Analytics 3.3 Reactive vs. Proactive Analytics 3.4 Customer vs. Operational Analytics 3.5 Technology & Implementation Approaches 3.5.1 Grid Computing 3.5.2 In-Database Processing 3.5.3 In-Memory Analytics 3.5.4 Machine Learning & Data Mining 3.5.5 Predictive Analytics 3.5.6 NLP (Natural Language Processing) 3.5.7 Text Analytics 3.5.8 Visual Analytics 3.5.9 Graph Analytics 3.5.10 Social Media, IT & Telco Network Analytics 4 Chapter 4: Business Case & Applications in the Automotive Industry 4.1 Overview & Investment Potential 4.2 Industry Specific Market Growth Drivers 4.3 Industry Specific Market Barriers 4.4 Key Applications 4.4.1 Product Development, Manufacturing & Supply Chain 4.4.1.1 Optimizing the Supply Chain 4.4.1.2 Eliminating Manufacturing Defects 4.4.1.3 Customer-Driven Product Design & Planning 4.4.2 After-Sales, Warranty & Dealer Management 4.4.2.1 Predictive Maintenance & Real-Time Diagnostics 4.4.2.2 Streamlining Recalls & Warranty 4.4.2.3 Parts Inventory & Pricing Optimization 4.4.2.4 Dealer Management & Customer Support Services 4.4.3 Connected Vehicles & Intelligent Transportation 4.4.3.1 UBI (Usage-Based Insurance) 4.4.3.2 Autonomous & Semi-Autonomous Driving 4.4.3.3 Intelligent Transportation 4.4.3.4 Fleet Management 4.4.3.5 Driver Safety & Vehicle Cyber Security 4.4.3.6 In-Vehicle Experience, Navigation & Infotainment 4.4.3.7 Ride Sourcing, Sharing & Rentals 4.4.4 Marketing, Sales & Other Applications 4.4.4.1 Marketing & Sales 4.4.4.2 Customer Retention 4.4.4.3 Third Party Monetization 4.4.4.4 Other Applications 5 Chapter 5: Automotive Industry Case Studies 5.1 Automotive OEMs 5.1.1 Audi: Facilitating Efficient Production Processes with Big Data 5.1.2 BMW: Eliminating Defects in New Vehicle Models with Big Data 5.1.3 Daimler: Ensuring Quality Assurance with Big Data 5.1.4 Dongfeng Motor Corporation: Enriching Network-Connected Autonomous Vehicles with Big Data 5.1.5 FCA (Fiat Chrysler Automobiles): Enhancing Dealer Management with Big Data 5.1.6 Ford Motor Company: Making Efficient Transportation Decisions with Big Data 5.1.7 GM (General Motors Company): Personalizing In-Vehicle Experience with Big Data 5.1.8 Groupe PSA: Reducing Industrial Energy Bills with Big Data 5.1.9 Groupe Renault: Boosting Driver Safety with Big Data 5.1.10 Honda Motor Company: Improving F1 Performance & Fuel Efficiency with Big Data 5.1.11 Hyundai Motor Company: Empowering Connected & Self-Driving Cars with Big Data 5.1.12 Jaguar Land Rover: Realizing Better & Cheaper Vehicle Designs with Big Data 5.1.13 Mazda Motor Corporation: Creating Better Engines with Big Data 5.1.14 Nissan Motor Company: Leveraging Big Data to Drive After-Sales Business Growth 5.1.15 SAIC Motor Corporation: Transforming Stressful Driving to Enjoyable Moments with Big Data 5.1.16 Subaru: Turbocharging Dealer Interaction with Big Data 5.1.17 Suzuki Motor Corporation: Accelerating Vehicle Design and Innovation with Big Data 5.1.18 Tesla: Achieving Customer Loyalty with Big Data 5.1.19 Toyota Motor Corporation: Powering Smart Cars with Big Data 5.1.20 Volkswagen Group: Transitioning to End-to-End Mobility Solutions with Big Data 5.1.21 Volvo Cars: Reducing Breakdowns and Failures with Big Data 5.2 Other Stakeholders 5.2.1 Allstate Corporation & Arity: Making Transportation Safer & Smarter with Big Data 5.2.2 automotiveMastermind: Helping Automotive Dealerships Increase Sales with Big Data 5.2.3 Continental: Making Vehicles Safer with Big Data 5.2.4 Cox Automotive: Transforming the Used Vehicle Lifecycle with Big Data 5.2.5 Dash Labs: Turning Regular Cars into Data-Driven Smart Cars with Big Data 5.2.6 Delphi Automotive: Monetizing Connected Vehicles with Big Data 5.2.7 Denso Corporation: Enabling Hazard Prediction with Big Data 5.2.8 HERE: Easing Traffic Congestion with Big Data 5.2.9 Lytx: Ensuring Road Safety with Big Data 5.2.10 Michelin: Optimizing Tire Manufacturing with Big Data 5.2.11 Progressive Corporation: Rewarding Safe Drivers & Improving Traffic Safety with Big Data 5.2.12 Bosch: Empowering Fleet Management & Vehicle Insurance with Big Data 5.2.13 THTA (Tokyo Hire-Taxi Association): Making Connected Taxis a Reality with Big Data 5.2.14 Uber Technologies: Revolutionizing Ride Sourcing with Big Data 5.2.15 U.S. Xpress: Driving Fuel-Savings with Big Data 6 Chapter 6: Future Roadmap & Value Chain 6.1 Future Roadmap 6.1.1 Pre-2020: Investments in Advanced Analytics for Vehicle-Related Services 6.1.2 2020 – 2025: Proliferation of Real-Time Edge Analytics & Automotive Data Monetization 6.1.3 2025 – 2030: Towards Fully Autonomous Driving & Future IoT Applications 6.2 The Big Data Value Chain 6.2.1 Hardware Providers 6.2.1.1 Storage & Compute Infrastructure Providers 6.2.1.2 Networking Infrastructure Providers 6.2.2 Software Providers 6.2.2.1 Hadoop & Infrastructure Software Providers 6.2.2.2 SQL & NoSQL Providers 6.2.2.3 Analytic Platform & Application Software Providers 6.2.2.4 Cloud Platform Providers 6.2.3 Professional Services Providers 6.2.4 End-to-End Solution Providers 6.2.5 Automotive Industry 7 Chapter 7: Standardization & Regulatory Initiatives 7.1 ASF (Apache Software Foundation) 7.1.1 Management of Hadoop 7.1.2 Big Data Projects Beyond Hadoop 7.2 CSA (Cloud Security Alliance) 7.2.1 BDWG (Big Data Working Group) 7.3 CSCC (Cloud Standards Customer Council) 7.3.1 Big Data Working Group 7.4 DMG (Data Mining Group) 7.4.1 PMML (Predictive Model Markup Language) Working Group 7.4.2 PFA (Portable Format for Analytics) Working Group 7.5 IEEE (Institute of Electrical and Electronics Engineers) 7.5.1 Big Data Initiative 7.6 INCITS (InterNational Committee for Information Technology Standards) 7.6.1 Big Data Technical Committee 7.7 ISO (International Organization for Standardization) 7.7.1 ISO/IEC JTC 1/SC 32: Data Management and Interchange 7.7.2 ISO/IEC JTC 1/SC 38: Cloud Computing and Distributed Platforms 7.7.3 ISO/IEC JTC 1/SC 27: IT Security Techniques 7.7.4 ISO/IEC JTC 1/WG 9: Big Data 7.7.5 Collaborations with Other ISO Work Groups 7.8 ITU (International Telecommunication Union) 7.8.1 ITU-T Y.3600: Big Data – Cloud Computing Based Requirements and Capabilities 7.8.2 Other Deliverables Through SG (Study Group) 13 on Future Networks 7.8.3 Other Relevant Work 7.9 Linux Foundation 7.9.1 ODPi (Open Ecosystem of Big Data) 7.10 NIST (National Institute of Standards and Technology) 7.10.1 NBD-PWG (NIST Big Data Public Working Group) 7.11 OASIS (Organization for the Advancement of Structured Information Standards) 7.11.1 Technical Committees 7.12 ODaF (Open Data Foundation) 7.12.1 Big Data Accessibility 7.13 ODCA (Open Data Center Alliance) 7.13.1 Work on Big Data 7.14 OGC (Open Geospatial Consortium) 7.14.1 Big Data DWG (Domain Working Group) 7.15 TM Forum 7.15.1 Big Data Analytics Strategic Program 7.16 TPC (Transaction Processing Performance Council) 7.16.1 TPC-BDWG (TPC Big Data Working Group) 7.17 W3C (World Wide Web Consortium) 7.17.1 Big Data Community Group 7.17.2 Open Government Community Group 8 Chapter 8: Market Sizing & Forecasts 8.1 Global Outlook for Big Data in the Automotive Industry 8.2 Hardware, Software & Professional Services Segmentation 8.3 Horizontal Submarket Segmentation 8.4 Hardware Submarkets 8.4.1 Storage and Compute Infrastructure 8.4.2 Networking Infrastructure 8.5 Software Submarkets 8.5.1 Hadoop & Infrastructure Software 8.5.2 SQL 8.5.3 NoSQL 8.5.4 Analytic Platforms & Applications 8.5.5 Cloud Platforms 8.6 Professional Services Submarket 8.6.1 Professional Services 8.7 Application Area Segmentation 8.7.1 Product Development, Manufacturing & Supply Chain 8.7.2 After-Sales, Warranty & Dealer Management 8.7.3 Connected Vehicles & Intelligent Transportation 8.7.4 Marketing, Sales & Other Applications 8.8 Use Case Segmentation 8.9 Product Development, Manufacturing & Supply Chain Use Cases 8.9.1 Supply Chain Management 8.9.2 Manufacturing 8.9.3 Product Design & Planning 8.10 After-Sales, Warranty & Dealer Management Use Cases 8.10.1 Predictive Maintenance & Real-Time Diagnostics 8.10.2 Recall & Warranty Management 8.10.3 Parts Inventory & Pricing Optimization 8.10.4 Dealer Management & Customer Support Services 8.11 Connected Vehicles & Intelligent Transportation Use Cases 8.11.1 UBI (Usage-Based Insurance) 8.11.2 Autonomous & Semi-Autonomous Driving 8.11.3 Intelligent Transportation 8.11.4 Fleet Management 8.11.5 Driver Safety & Vehicle Cyber Security 8.11.6 In-Vehicle Experience, Navigation & Infotainment 8.11.7 Ride Sourcing, Sharing & Rentals 8.12 Marketing, Sales & Other Application Use Cases 8.12.1 Marketing & Sales 8.12.2 Customer Retention 8.12.3 Third Party Monetization 8.12.4 Other Use Cases 8.13 Regional Outlook 8.14 Asia Pacific 8.14.1 Country Level Segmentation 8.14.2 Australia 8.14.3 China 8.14.4 India 8.14.5 Indonesia 8.14.6 Japan 8.14.7 Malaysia 8.14.8 Pakistan 8.14.9 Philippines 8.14.10 Singapore 8.14.11 South Korea 8.14.12 Taiwan 8.14.13 Thailand 8.14.14 Rest of Asia Pacific 8.15 Eastern Europe 8.15.1 Country Level Segmentation 8.15.2 Czech Republic 8.15.3 Poland 8.15.4 Russia 8.15.5 Rest of Eastern Europe 8.16 Latin & Central America 8.16.1 Country Level Segmentation 8.16.2 Argentina 8.16.3 Brazil 8.16.4 Mexico 8.16.5 Rest of Latin & Central America 8.17 Middle East & Africa 8.17.1 Country Level Segmentation 8.17.2 Israel 8.17.3 Qatar 8.17.4 Saudi Arabia 8.17.5 South Africa 8.17.6 UAE 8.17.7 Rest of the Middle East & Africa 8.18 North America 8.18.1 Country Level Segmentation 8.18.2 Canada 8.18.3 USA 8.19 Western Europe 8.19.1 Country Level Segmentation 8.19.2 Denmark 8.19.3 Finland 8.19.4 France 8.19.5 Germany 8.19.6 Italy 8.19.7 Netherlands 8.19.8 Norway 8.19.9 Spain 8.19.10 Sweden 8.19.11 UK 8.19.12 Rest of Western Europe 9 Chapter 9: Vendor Landscape 9.1 1010data 9.2 Absolutdata 9.3 Accenture 9.4 Actian Corporation/HCL Technologies 9.5 Adaptive Insights 9.6 Adobe Systems 9.7 Advizor Solutions 9.8 AeroSpike 9.9 AFS Technologies 9.10 Alation 9.11 Algorithmia 9.12 Alluxio 9.13 ALTEN 9.14 Alteryx 9.15 AMD (Advanced Micro Devices) 9.16 Anaconda 9.17 Apixio 9.18 Arcadia Data 9.19 ARM 9.20 AtScale 9.21 Attivio 9.22 Attunity 9.23 Automated Insights 9.24 AVORA 9.25 AWS (Amazon Web Services) 9.26 Axiomatics 9.27 Ayasdi 9.28 BackOffice Associates 9.29 Basho Technologies 9.30 BCG (Boston Consulting Group) 9.31 Bedrock Data 9.32 BetterWorks 9.33 Big Panda 9.34 BigML 9.35 Bitam 9.36 Blue Medora 9.37 BlueData Software 9.38 BlueTalon 9.39 BMC Software 9.40 BOARD International 9.41 Booz Allen Hamilton 9.42 Boxever 9.43 CACI International 9.44 Cambridge Semantics 9.45 Capgemini 9.46 Cazena 9.47 Centrifuge Systems 9.48 CenturyLink 9.49 Chartio 9.50 Cisco Systems 9.51 Civis Analytics 9.52 ClearStory Data 9.53 Cloudability 9.54 Cloudera 9.55 Cloudian 9.56 Clustrix 9.57 CognitiveScale 9.58 Collibra 9.59 Concurrent Technology/Vecima Networks 9.60 Confluent 9.61 Contexti 9.62 Couchbase 9.63 Crate.io 9.64 Cray 9.65 Databricks 9.66 Dataiku 9.67 Datalytyx 9.68 Datameer 9.69 DataRobot 9.70 DataStax 9.71 Datawatch Corporation 9.72 DDN (DataDirect Networks) 9.73 Decisyon 9.74 Dell Technologies 9.75 Deloitte 9.76 Demandbase 9.77 Denodo Technologies 9.78 Dianomic Systems 9.79 Digital Reasoning Systems 9.80 Dimensional Insight 9.81 Dolphin Enterprise Solutions Corporation/Hanse Orga Group 9.82 Domino Data Lab 9.83 Domo 9.84 Dremio 9.85 DriveScale 9.86 Druva 9.87 Dundas Data Visualization 9.88 DXC Technology 9.89 Elastic 9.90 Engineering Group (Engineering Ingegneria Informatica) 9.91 EnterpriseDB Corporation 9.92 eQ Technologic 9.93 Ericsson 9.94 Erwin 9.95 EVŌ (Big Cloud Analytics) 9.96 EXASOL 9.97 EXL (ExlService Holdings) 9.98 Facebook 9.99 FICO (Fair Isaac Corporation) 9.100 Figure Eight 9.101 FogHorn Systems 9.102 Fractal Analytics 9.103 Franz 9.104 Fujitsu 9.105 Fuzzy Logix 9.106 Gainsight 9.107 GE (General Electric) 9.108 Glassbeam 9.109 GoodData Corporation 9.110 Google/Alphabet 9.111 Grakn Labs 9.112 Greenwave Systems 9.113 GridGain Systems 9.114 H2O.ai 9.115 HarperDB 9.116 Hedvig 9.117 Hitachi Vantara 9.118 Hortonworks 9.119 HPE (Hewlett Packard Enterprise) 9.120 Huawei 9.121 HVR 9.122 HyperScience 9.123 HyTrust 9.124 IBM Corporation 9.125 iDashboards 9.126 IDERA 9.127 Ignite Technologies 9.128 Imanis Data 9.129 Impetus Technologies 9.130 Incorta 9.131 InetSoft Technology Corporation 9.132 InfluxData 9.133 Infogix 9.134 Infor/Birst 9.135 Informatica 9.136 Information Builders 9.137 Infosys 9.138 Infoworks 9.139 Insightsoftware.com 9.140 InsightSquared 9.141 Intel Corporation 9.142 Interana 9.143 InterSystems Corporation 9.144 Jedox 9.145 Jethro 9.146 Jinfonet Software 9.147 Juniper Networks 9.148 KALEAO 9.149 Keen IO 9.150 Keyrus 9.151 Kinetica 9.152 KNIME 9.153 Kognitio 9.154 Kyvos Insights 9.155 LeanXcale 9.156 Lexalytics 9.157 Lexmark International 9.158 Lightbend 9.159 Logi Analytics 9.160 Logical Clocks 9.161 Longview Solutions/Tidemark 9.162 Looker Data Sciences 9.163 LucidWorks 9.164 Luminoso Technologies 9.165 Maana 9.166 Manthan Software Services 9.167 MapD Technologies 9.168 MapR Technologies 9.169 MariaDB Corporation 9.170 MarkLogic Corporation 9.171 Mathworks 9.172 Melissa 9.173 MemSQL 9.174 Metric Insights 9.175 Microsoft Corporation 9.176 MicroStrategy 9.177 Minitab 9.178 MongoDB 9.179 Mu Sigma 9.180 NEC Corporation 9.181 Neo4j 9.182 NetApp 9.183 Nimbix 9.184 Nokia 9.185 NTT Data Corporation 9.186 Numerify 9.187 NuoDB 9.188 NVIDIA Corporation 9.189 Objectivity 9.190 Oblong Industries 9.191 OpenText Corporation 9.192 Opera Solutions 9.193 Optimal Plus 9.194 Oracle Corporation 9.195 Palantir Technologies 9.196 Panasonic Corporation/Arimo 9.197 Panorama Software 9.198 Paxata 9.199 Pepperdata 9.200 Phocas Software 9.201 Pivotal Software 9.202 Prognoz 9.203 Progress Software Corporation 9.204 Provalis Research 9.205 Pure Storage 9.206 PwC (PricewaterhouseCoopers International) 9.207 Pyramid Analytics 9.208 Qlik 9.209 Qrama/Tengu 9.210 Quantum Corporation 9.211 Qubole 9.212 Rackspace 9.213 Radius Intelligence 9.214 RapidMiner 9.215 Recorded Future 9.216 Red Hat 9.217 Redis Labs 9.218 RedPoint Global 9.219 Reltio 9.220 RStudio 9.221 Rubrik/Datos IO 9.222 Ryft 9.223 Sailthru 9.224 Salesforce.com 9.225 Salient Management Company 9.226 Samsung Group 9.227 SAP 9.228 SAS Institute 9.229 ScaleOut Software 9.230 Seagate Technology 9.231 Sinequa 9.232 SiSense 9.233 Sizmek 9.234 SnapLogic 9.235 Snowflake Computing 9.236 Software AG 9.237 Splice Machine 9.238 Splunk 9.239 Strategy Companion Corporation 9.240 Stratio 9.241 Streamlio 9.242 StreamSets 9.243 Striim 9.244 Sumo Logic 9.245 Supermicro (Super Micro Computer) 9.246 Syncsort 9.247 SynerScope 9.248 SYNTASA 9.249 Tableau Software 9.250 Talend 9.251 Tamr 9.252 TARGIT 9.253 TCS (Tata Consultancy Services) 9.254 Teradata Corporation 9.255 Thales/Guavus 9.256 ThoughtSpot 9.257 TIBCO Software 9.258 Toshiba Corporation 9.259 Transwarp 9.260 Trifacta 9.261 Unifi Software 9.262 Unravel Data 9.263 VANTIQ 9.264 VMware 9.265 VoltDB 9.266 WANdisco 9.267 Waterline Data 9.268 Western Digital Corporation 9.269 WhereScape 9.270 WiPro 9.271 Wolfram Research 9.272 Workday 9.273 Xplenty 9.274 Yellowfin BI 9.275 Yseop 9.276 Zendesk 9.277 Zoomdata 9.278 Zucchetti 10 Chapter 10: Conclusion & Strategic Recommendations 10.1 Why is the Market Poised to Grow? 10.2 Geographic Outlook: Which Countries Offer the Highest Growth Potential? 10.3 Partnerships & M&A Activity: Highlighting the Importance of Big Data 10.4 The Significance of Edge Analytics for Automotive Applications 10.5 Achieving Customer Retention with Data-Driven Services 10.6 Addressing Privacy Concerns 10.7 The Role of Legislation 10.8 Encouraging Data Sharing in the Automotive Industry 10.9 Assessing the Impact of Self-Driving Vehicles 10.10 Recommendations 10.10.1 Big Data Hardware, Software & Professional Services Providers 10.10.2 Automotive OEMS & Other Stakeholders
NEED Help?
If you need any help or guidance, please feel free to call us.
USA : +1 (661) 636 6162
INDIA : +91 9325802062
or
Write us on : sales@kandjmarketresearch.com